Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways.
نویسندگان
چکیده
Glucosinolate accumulation and expression of glucosinolate biosynthetic genes were studied in response to four herbivores in Arabidopsis thaliana (L.) wild-type (Columbia) and mutant lines affected in defense signaling. Herbivory on wild-type plants led to increased aliphatic glucosinolate content for three of four herbivores tested, the aphid generalist Myzus persicae (Sulzer), the aphid specialist Brevicoryne brassicae (L.), and the lepidopteran generalist Spodoptera exigua Hübner. The lepidopteran specialist Pieris rapae L. did not alter aliphatic glucosinolate content in the wild-type, but indole glucosinolates increased slightly. Gene expression associated with aliphatic glucosinolate biosynthesis increased after feeding by all species, indicating that glucosinolate accumulation is not always regulated at the level of these gene transcripts. A. thaliana lines with mutations in jasmonate (coi1), salicylate (npr1), and ethylene signaling (etr1) diverged in gene expression, glucosinolate content, and insect performance compared to wild-type suggesting the involvement of all three modes of signaling in responses to herbivores. The coi1 mutant had much lower constitutive levels of aliphatic glucosinolates than wild-type but content increased in response to herbivory. In contrast, npr1 had higher constitutive levels of aliphatic glucosinolates and levels did not increase after feeding. Glucosinolate content of the etr1 mutant was comparable to wild-type and did not change with herbivory, except for P. rapae feeding which elicited elevated indolyl glucosinolate levels. Unlike the wild-type response, gene transcripts of aliphatic glucosinolate biosynthesis did not generally increase in the mutants. Both glucosinolate content and gene expression data indicate that salicylate and ethylene signaling repress some jasmonate-mediated responses to herbivory.
منابع مشابه
Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملMajor signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects.
Plant responses to enemies are coordinated by several interacting signaling systems. Molecular and genetic studies with mutants and exogenous signal application suggest that jasmonate (JA)-, salicylate (SA)-, and ethylene (ET)-mediated pathways modulate expression of portions of the defense phenotype in Arabidopsis (Arabidopsis thaliana), but have not yet linked these observations directly with...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملWater Stress and Aphid Feeding Differentially Influence Metabolite Composition in Arabidopsis thaliana (L.)
Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L.) plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer) and the crucifer specialist Brevicoryne br...
متن کاملcis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids.
It is of adaptive value for a plant to prepare its defenses when a threat is detected, and certain plant volatiles associated with insect damage, such as cis-jasmone (CJ), are known to switch-on defense metabolism. We used aphid and aphid parasitoid responses to Arabidopsis thaliana as a model system for studying gene expression and defense chemistry and its impact at different trophic levels. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytochemistry
دوره 67 22 شماره
صفحات -
تاریخ انتشار 2006